Centroid Decomposition#
I heard from the experts that starchy foods are delicious, so I went to solve problems.
Purpose#
Used to solve path problems on trees.
For example, to find how many paths between points have a length of k.
Steps#
-
First, find the centroid to ensure that the tree has fewer levels, preventing TLE.
-
void getG(int p, int fa) { treeSize[p] = 1; // Size of the subtree rooted at the current node sonLargest[p] = 0; // Size of the largest subtree of a node for (int i = head[p]; i; i = e[i].nex) { int y = e[i].to; if (y != fa && (v[y] == 0)) { getG(y, p); treeSize[p] += treeSize[y]; sonLargest[p] = max(sonLargest[p], treeSize[y]); } } sonLargest[p] = max(sonLargest[p], sizeTot - treeSize[p] + 1); // Considering the parent as a subtree is also a case (I feel like we need to add 1 here, but other experts' codes do not add it) (although it seems to have no effect) if (sonLargest[p] < sonLargest[root]) root = p; }
-
-
Then recursively solve starting from the centroid.
-
void solve(int u) { v[u] = 1; ans += calc(u, 0); // Calculate the path situation where the current node is the root, connecting nodes in the left child to nodes in the right child for (int i = head[u]; i; i = e[i].nex) { int y = e[i].to; if (!v[y]) { ans -= calc(y, e[i].w); // Deduplication sonLargest[0] = sizeTot = treeSize[u]; root = 0; getG(y, 0); solve(root); } } }
-
Deduplication generally removes such situations.
-
-
Path calculation from left child — root — right child.
-
This depends on the specific problem.
-
// This is an example of finding paths shorter than k int calc (int p, int de) { newd = 0; int ans = 0; getDep(p, 0, de); sort(dep + 1, dep + 1 + newd); int l = 1, r = newd; while (l < r) { if (dep[l] + dep[r] <= k) { ans += r - l; ++l; } else { --r; } } return ans; }
-
getDep is used to find the distance from p to its children.
void getDep(int p, int fa, int l) { // l is the distance from root to p dep[++newd] = l; for (int i = head[p]; i; i = e[i].nex) { int y = e[i].to; if (y !=fa && (!v[y])) { getDep(y, p, l + e[i].w); } } }
-
Example Problems#
All from Luogu.
P3806 【Template】Centroid Decomposition 1#
Template problem.
Make the queries offline, and during calc, enumerate pairs of points to count all possible results.
#include<cstdio>
#include<ctime>
#include<cstring>
#include<iostream>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
const int MAXN=40000 * 2 + 5, INF=0x3f3f3f3f;
struct ed {
int to,w,nex;
} e[MAXN];
int dep[MAXN];
int newp, root, sizeTot,newd;
int n, m, k;
int ans[10000000 + 5];
int head[MAXN], dist[MAXN];
int treeSize[MAXN], sonLargest[MAXN]={INF};
bool v[MAXN];
void lineAdd (int p1, int p2, int w);
void getG (int v, int fa);
void getDep (int p, int fa, int l);
void solve (int u);
void calc (int p, int de, int add);
int main(void) {
#ifndef ONLINE_JUDGE
long _begin_time = clock();
freopen("in.txt","r",stdin);
freopen("out.txt", "w", stdout);
#endif
scanf("%d%d", &n, &m);
sizeTot = sonLargest[0] = n;
for (int i = 1; i < n; ++i) {
int p1, p2, w;
scanf("%d%d%d", &p1, &p2, &w);
lineAdd(p1, p2, w);
lineAdd(p2, p1, w);
}
getG(1, 0);
//memset(v, 0, sizeof(v));
solve(root);
for(int i = 1; i <= m; ++i) {
scanf("%d", &k);
printf("ans[k] > 0 ? "AYE\n" : "NAY\n");
}
#ifndef ONLINE_JUDGE
long _end_time = clock();
cout << "time = " << _end_time - _begin_time << "ms" <<endl;
#endif
return 0;
}
void lineAdd(int p1, int p2, int w) {
++newp;
e[newp].w = w;
e[newp].to = p2;
e[newp].nex = head[p1];
head[p1] = newp;
}
void getG(int p, int fa) {
treeSize[p] = 1;
sonLargest[p] = 0;
for (int i = head[p]; i; i = e[i].nex) {
int y = e[i].to;
if (y != fa && (v[y] == 0)) {
getG(y, p);
treeSize[p] += treeSize[y];
sonLargest[p] = max(sonLargest[p], treeSize[y]);
}
}
sonLargest[p] = max(sonLargest[p], sizeTot - treeSize[p] + 1);
if (sonLargest[p] < sonLargest[root]) root = p;
}
void getDep(int p, int fa, int l) {
dep[++newd] = l;
for (int i = head[p]; i; i = e[i].nex) {
int y = e[i].to;
if (y !=fa && (!v[y])) {
getDep(y, p, l + e[i].w);
}
}
}
void solve(int u) {
v[u] = 1;
calc(u, 0, 1);
for (int i = head[u]; i; i = e[i].nex) {
int y = e[i].to;
if (!v[y]) {
calc(y, e[i].w, -1);
sonLargest[0] = sizeTot = treeSize[u];
root = 0;
getG(y, 0);
solve(root);
}
}
}
void calc (int p, int de, int add) {
newd = 0;
getDep(p, 0, de);
for (int i = 1; i <= newd; ++i) {
for (int j = 1; j <= newd; ++j) {
ans[dep[i] + dep[j]] += add;
}
}
}
P2634 Congcong Keke#
In getDep, use dep[0]
to record multiples, and dep[1]
to record remainders of 1...
In calc, the answer equals dep[0] * dep[0] + dep[1] * dep[2] * 2
.
#include<cstdio>
#include<ctime>
#include<cstring>
#include<iostream>
#include<queue>
#include<vector>
#include<algorithm>
#define clear(a) memset(a, 0, sizeof(a))
using namespace std;
const int MAXN=40000 * 2 + 5, INF=0x3f3f3f3f;
struct ed {
int to,w,nex;
} e[MAXN];
int dep[MAXN];
int newp, root, sizeTot,newd;
int n, m, k;
int ans;
int head[MAXN], dist[MAXN];
int treeSize[MAXN], sonLargest[MAXN]={INF};
bool v[MAXN];
void lineAdd (int p1, int p2, int w);
void getG (int v, int fa);
void getDep (int p, int fa, int l);
void solve (int u);
int calc (int p, int de);
int gcd (int p1, int p2) {return (p2 % p1 == 0) ? p1 : gcd(p2 % p1, p1);}
int main(void) {
#ifndef ONLINE_JUDGE
long _begin_time = clock();
freopen("in.txt","r",stdin);
freopen("out.txt", "w", stdout);
#endif
scanf("%d", &n);
sizeTot = sonLargest[0] = n;
for (int i = 1; i < n; ++i) {
int p1, p2, w;
scanf("%d%d%d", &p1, &p2, &w);
lineAdd(p1, p2, w);
lineAdd(p2, p1, w);
}
getG(1, 0);
solve(root);
int fenMu = n * n;
int g = gcd(ans, fenMu);
printf("%d/%d\n", ans / g, fenMu / g);
#ifndef ONLINE_JUDGE
long _end_time = clock();
cout << "time = " << _end_time - _begin_time << "ms" <<endl;
#endif
return 0;
}
void lineAdd(int p1, int p2, int w) {
++newp;
e[newp].w = w;
e[newp].to = p2;
e[newp].nex = head[p1];
head[p1] = newp;
}
void getG(int p, int fa) {
treeSize[p] = 1;
sonLargest[p] = 0;
for (int i = head[p]; i; i = e[i].nex) {
int y = e[i].to;
if (y != fa && (v[y] == 0)) {
getG(y, p);
treeSize[p] += treeSize[y];
sonLargest[p] = max(sonLargest[p], treeSize[y]);
}
}
sonLargest[p] = max(sonLargest[p], sizeTot - treeSize[p] + 1);
if (sonLargest[p] < sonLargest[root]) root = p;
}
void getDep(int p, int fa, int l) {
++dep[l % 3];
for (int i = head[p]; i; i = e[i].nex) {
int y = e[i].to;
if (y !=fa && (!v[y])) {
getDep(y, p, (l + e[i].w) % 3);
}
}
}
void solve(int u) {
v[u] = 1;
ans += calc(u, 0);
for (int i = head[u]; i; i = e[i].nex) {
int y = e[i].to;
if (!v[y]) {
ans -= calc(y, e[i].w);
sonLargest[0] = sizeTot = treeSize[u];
root = 0;
getG(y, 0);
solve(root);
}
}
}
int calc (int p, int de) {
dep[0] = dep[1] = dep[2] = 0;
getDep(p, 0, de);
int ans = dep[0] * dep[0] + dep[1] * dep[2] * 2;
return ans;
}
P4178 Tree#
In this problem, calc cannot use brute force enumeration, otherwise it will TLE.
#include<cstdio>
#include<ctime>
#include<cstring>
#include<iostream>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
const int MAXN=40000 * 2 + 5, INF=0x3f3f3f3f;
struct ed {
int to,w,nex;
} e[MAXN];
int dep[MAXN];
int newp, root, sizeTot,newd;
int n, m, k;
int ans;
int head[MAXN], dist[MAXN];
int treeSize[MAXN], sonLargest[MAXN]={INF};
bool v[MAXN];
void lineAdd (int p1, int p2, int w);
void getG (int v, int fa);
void getDep (int p, int fa, int l);
void solve (int u);
int calc (int p, int de);
int main(void) {
#ifndef ONLINE_JUDGE
long _begin_time = clock();
freopen("in.txt","r",stdin);
freopen("out.txt", "w", stdout);
#endif
scanf("%d", &n);
sizeTot = sonLargest[0] = n;
for (int i = 1; i < n; ++i) {
int p1, p2, w;
scanf("%d%d%d", &p1, &p2, &w);
lineAdd(p1, p2, w);
lineAdd(p2, p1, w);
}
scanf("%d", &k);
getG(1, 0);
solve(root);
printf("%d\n", ans);
#ifndef ONLINE_JUDGE
long _end_time = clock();
cout << "time = " << _end_time - _begin_time << "ms" <<endl;
#endif
return 0;
}
void lineAdd(int p1, int p2, int w) {
++newp;
e[newp].w = w;
e[newp].to = p2;
e[newp].nex = head[p1];
head[p1] = newp;
}
void getG(int p, int fa) {
treeSize[p] = 1;
sonLargest[p] = 0;
for (int i = head[p]; i; i = e[i].nex) {
int y = e[i].to;
if (y != fa && (v[y] == 0)) {
getG(y, p);
treeSize[p] += treeSize[y];
sonLargest[p] = max(sonLargest[p], treeSize[y]);
}
}
sonLargest[p] = max(sonLargest[p], sizeTot - treeSize[p] + 1);
if (sonLargest[p] < sonLargest[root]) root = p;
}
void getDep(int p, int fa, int l) {
dep[++newd] = l;
for (int i = head[p]; i; i = e[i].nex) {
int y = e[i].to;
if (y !=fa && (!v[y])) {
getDep(y, p, l + e[i].w);
}
}
}
void solve(int u) {
v[u] = 1;
ans += calc(u, 0);
for (int i = head[u]; i; i = e[i].nex) {
int y = e[i].to;
if (!v[y]) {
ans -= calc(y, e[i].w);
sonLargest[0] = sizeTot = treeSize[u];
root = 0;
getG(y, 0);
solve(root);
}
}
}
int calc (int p, int de) {
newd = 0;
int ans = 0;
getDep(p, 0, de);
sort(dep + 1, dep + 1 + newd);
int l = 1, r = newd;
while (l < r) {
if (dep[l] + dep[r] < k) {
ans += r - l;
++l;
}
else {
--r;
}
}
return ans;
}