BuringStraw

BuringStraw

Point Division

Centroid Decomposition#

I heard from the experts that starchy foods are delicious, so I went to solve problems.

image

Purpose#

Used to solve path problems on trees.

For example, to find how many paths between points have a length of k.

Steps#

  • First, find the centroid to ensure that the tree has fewer levels, preventing TLE.

    • void getG(int p, int fa) {
          treeSize[p] = 1; // Size of the subtree rooted at the current node
          sonLargest[p] = 0; // Size of the largest subtree of a node
          for (int i = head[p]; i; i = e[i].nex) {
              int y = e[i].to;
              if (y != fa && (v[y] == 0)) {
                  getG(y, p);
                  treeSize[p] += treeSize[y];
                  sonLargest[p] = max(sonLargest[p], treeSize[y]);
              }
          }
          sonLargest[p] = max(sonLargest[p], sizeTot - treeSize[p] + 1); // Considering the parent as a subtree is also a case (I feel like we need to add 1 here, but other experts' codes do not add it) (although it seems to have no effect)
          if (sonLargest[p] < sonLargest[root]) root = p;
      }
      
  • Then recursively solve starting from the centroid.

    • void solve(int u) {
          v[u] = 1;
          ans += calc(u, 0); // Calculate the path situation where the current node is the root, connecting nodes in the left child to nodes in the right child
          for (int i = head[u]; i; i = e[i].nex) {
              int y = e[i].to;
              if (!v[y]) {
                  ans -= calc(y, e[i].w); // Deduplication
                  sonLargest[0] = sizeTot = treeSize[u];
                  root = 0;
                  getG(y, 0);
                  solve(root);
              }
          }
      }
      
    • Deduplication generally removes such situations.

      image

  • Path calculation from left child — root — right child.

    • This depends on the specific problem.

    • // This is an example of finding paths shorter than k
      int calc (int p, int de) {
      	newd = 0;
      	int ans = 0;
          getDep(p, 0, de);
          sort(dep + 1, dep + 1 + newd);
      	int l = 1, r = newd;
      	while (l < r) {
      		if (dep[l] + dep[r] <= k) {
      			ans += r - l;
      			++l;
      		}
      		else {
      			--r;
      		}
      	}
      	return ans;
      }
      
    • getDep is used to find the distance from p to its children.

       void getDep(int p, int fa, int l) { // l is the distance from root to p
           dep[++newd] = l;
           for (int i = head[p]; i; i = e[i].nex) {
               int y = e[i].to;
               if (y !=fa && (!v[y])) {
                   getDep(y, p, l + e[i].w);
               }
           }
       }
      

Example Problems#

All from Luogu.

P3806 【Template】Centroid Decomposition 1#

Template problem.

Make the queries offline, and during calc, enumerate pairs of points to count all possible results.

#include<cstdio>
#include<ctime>
#include<cstring>
#include<iostream>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;

const int MAXN=40000 * 2 + 5, INF=0x3f3f3f3f;

struct ed {
    int to,w,nex;
} e[MAXN];

int dep[MAXN];
int newp, root, sizeTot,newd;
int n, m, k;
int ans[10000000 + 5];
int head[MAXN], dist[MAXN];
int treeSize[MAXN], sonLargest[MAXN]={INF};
bool v[MAXN];

void lineAdd (int p1, int p2, int w);
void getG (int v, int fa);
void getDep (int p, int fa, int l);
void solve (int u);
void calc (int p, int de, int add);

int main(void) {
    #ifndef ONLINE_JUDGE
    long _begin_time = clock();
    freopen("in.txt","r",stdin);
    freopen("out.txt", "w", stdout);
    #endif

    scanf("%d%d", &n, &m);
    sizeTot = sonLargest[0] = n;
    for (int i = 1; i < n; ++i) {
        int p1, p2, w;
        scanf("%d%d%d", &p1, &p2, &w);
        lineAdd(p1, p2, w);
        lineAdd(p2, p1, w);
    }
    getG(1, 0);
    //memset(v, 0, sizeof(v));
    solve(root);
    for(int i = 1; i <= m; ++i) {
        scanf("%d", &k);
        printf("ans[k] > 0 ? "AYE\n" : "NAY\n");
    }

    #ifndef ONLINE_JUDGE
    long _end_time = clock();
    cout << "time = " << _end_time - _begin_time << "ms" <<endl;
    #endif
    return 0;
}

void lineAdd(int p1, int p2, int w) {
    ++newp;
    e[newp].w = w;
    e[newp].to = p2;
    e[newp].nex = head[p1];
    head[p1] = newp;
}

void getG(int p, int fa) {
    treeSize[p] = 1;
    sonLargest[p] = 0;
    for (int i = head[p]; i; i = e[i].nex) {
        int y = e[i].to;
        if (y != fa && (v[y] == 0)) {
            getG(y, p);
            treeSize[p] += treeSize[y];
            sonLargest[p] = max(sonLargest[p], treeSize[y]);
        }
    }
    sonLargest[p] = max(sonLargest[p], sizeTot - treeSize[p] + 1);
    if (sonLargest[p] < sonLargest[root]) root = p;
}

void getDep(int p, int fa, int l) {
    dep[++newd] = l;
    for (int i = head[p]; i; i = e[i].nex) {
        int y = e[i].to;
        if (y !=fa && (!v[y])) {
            getDep(y, p, l + e[i].w);
        }
    }
}

void solve(int u) {
    v[u] = 1;
    calc(u, 0, 1);
    for (int i = head[u]; i; i = e[i].nex) {
        int y = e[i].to;
        if (!v[y]) {
            calc(y, e[i].w, -1);
            sonLargest[0] = sizeTot = treeSize[u];
            root = 0;
            getG(y, 0);
            solve(root);
        }
    }
}

void calc (int p, int de, int add) {
	newd = 0;
    getDep(p, 0, de);
    for (int i = 1; i <= newd; ++i) {
        for (int j = 1; j <= newd; ++j) {
            ans[dep[i] + dep[j]] += add;
        }
    }
}

P2634 Congcong Keke#

In getDep, use dep[0] to record multiples, and dep[1] to record remainders of 1...

In calc, the answer equals dep[0] * dep[0] + dep[1] * dep[2] * 2.

#include<cstdio>
#include<ctime>
#include<cstring>
#include<iostream>
#include<queue>
#include<vector>
#include<algorithm>
#define clear(a) memset(a, 0, sizeof(a))
using namespace std;

const int MAXN=40000 * 2 + 5, INF=0x3f3f3f3f;

struct ed {
    int to,w,nex;
} e[MAXN];

int dep[MAXN];
int newp, root, sizeTot,newd;
int n, m, k;
int ans;
int head[MAXN], dist[MAXN];
int treeSize[MAXN], sonLargest[MAXN]={INF};
bool v[MAXN];

void lineAdd (int p1, int p2, int w);
void getG (int v, int fa);
void getDep (int p, int fa, int l);
void solve (int u);
int calc (int p, int de);
int gcd (int p1, int p2) {return (p2 % p1 == 0) ? p1 : gcd(p2 % p1, p1);}

int main(void) {
    #ifndef ONLINE_JUDGE
    long _begin_time = clock();
    freopen("in.txt","r",stdin);
    freopen("out.txt", "w", stdout);
    #endif
    scanf("%d", &n);
    sizeTot = sonLargest[0] = n;
    for (int i = 1; i < n; ++i) {
        int p1, p2, w;
        scanf("%d%d%d", &p1, &p2, &w);
        lineAdd(p1, p2, w);
        lineAdd(p2, p1, w);
    }
    getG(1, 0);
    solve(root);
    int fenMu = n * n;
    int g = gcd(ans, fenMu);
    printf("%d/%d\n", ans / g, fenMu / g);

    #ifndef ONLINE_JUDGE
    long _end_time = clock();
    cout << "time = " << _end_time - _begin_time << "ms" <<endl;
    #endif
    return 0;
}

void lineAdd(int p1, int p2, int w) {
    ++newp;
    e[newp].w = w;
    e[newp].to = p2;
    e[newp].nex = head[p1];
    head[p1] = newp;
}

void getG(int p, int fa) {
    treeSize[p] = 1;
    sonLargest[p] = 0;
    for (int i = head[p]; i; i = e[i].nex) {
        int y = e[i].to;
        if (y != fa && (v[y] == 0)) {
            getG(y, p);
            treeSize[p] += treeSize[y];
            sonLargest[p] = max(sonLargest[p], treeSize[y]);
        }
    }
    sonLargest[p] = max(sonLargest[p], sizeTot - treeSize[p] + 1);
    if (sonLargest[p] < sonLargest[root]) root = p;
}

void getDep(int p, int fa, int l) {
    ++dep[l % 3];
    for (int i = head[p]; i; i = e[i].nex) {
        int y = e[i].to;
        if (y !=fa && (!v[y])) {
            getDep(y, p, (l + e[i].w) % 3);
        }
    }
}

void solve(int u) {
    v[u] = 1;
    ans += calc(u, 0);
    for (int i = head[u]; i; i = e[i].nex) {
        int y = e[i].to;
        if (!v[y]) {
            ans -= calc(y, e[i].w);
            sonLargest[0] = sizeTot = treeSize[u];
            root = 0;
            getG(y, 0);
            solve(root);
        }
    }
}

int calc (int p, int de) {
    dep[0] = dep[1] = dep[2] = 0;
    getDep(p, 0, de);
    int ans = dep[0] * dep[0] + dep[1] * dep[2] * 2;
    return ans;
}

P4178 Tree#

In this problem, calc cannot use brute force enumeration, otherwise it will TLE.

#include<cstdio>
#include<ctime>
#include<cstring>
#include<iostream>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;

const int MAXN=40000 * 2 + 5, INF=0x3f3f3f3f;

struct ed {
    int to,w,nex;
} e[MAXN];

int dep[MAXN];
int newp, root, sizeTot,newd;
int n, m, k;
int ans;
int head[MAXN], dist[MAXN];
int treeSize[MAXN], sonLargest[MAXN]={INF};
bool v[MAXN];

void lineAdd (int p1, int p2, int w);
void getG (int v, int fa);
void getDep (int p, int fa, int l);
void solve (int u);
int calc (int p, int de);

int main(void) {
    #ifndef ONLINE_JUDGE
    long _begin_time = clock();
    freopen("in.txt","r",stdin);
    freopen("out.txt", "w", stdout);
    #endif

    scanf("%d", &n);
    sizeTot = sonLargest[0] = n;
    for (int i = 1; i < n; ++i) {
        int p1, p2, w;
        scanf("%d%d%d", &p1, &p2, &w);
        lineAdd(p1, p2, w);
        lineAdd(p2, p1, w);
    }
    scanf("%d", &k);
    getG(1, 0);
    solve(root);
	printf("%d\n", ans);

    #ifndef ONLINE_JUDGE
    long _end_time = clock();
    cout << "time = " << _end_time - _begin_time << "ms" <<endl;
    #endif
    return 0;
}

void lineAdd(int p1, int p2, int w) {
    ++newp;
    e[newp].w = w;
    e[newp].to = p2;
    e[newp].nex = head[p1];
    head[p1] = newp;
}

void getG(int p, int fa) {
    treeSize[p] = 1;
    sonLargest[p] = 0;
    for (int i = head[p]; i; i = e[i].nex) {
        int y = e[i].to;
        if (y != fa && (v[y] == 0)) {
            getG(y, p);
            treeSize[p] += treeSize[y];
            sonLargest[p] = max(sonLargest[p], treeSize[y]);
        }
    }
    sonLargest[p] = max(sonLargest[p], sizeTot - treeSize[p] + 1);
    if (sonLargest[p] < sonLargest[root]) root = p;
}

void getDep(int p, int fa, int l) {
    dep[++newd] = l;
    for (int i = head[p]; i; i = e[i].nex) {
        int y = e[i].to;
        if (y !=fa && (!v[y])) {
            getDep(y, p, l + e[i].w);
        }
    }
}

void solve(int u) {
    v[u] = 1;
    ans += calc(u, 0);
    for (int i = head[u]; i; i = e[i].nex) {
        int y = e[i].to;
        if (!v[y]) {
            ans -= calc(y, e[i].w);
            sonLargest[0] = sizeTot = treeSize[u];
            root = 0;
            getG(y, 0);
            solve(root);
        }
    }
}

int calc (int p, int de) {
	newd = 0;
	int ans = 0;
    getDep(p, 0, de);
    sort(dep + 1, dep + 1 + newd);
	int l = 1, r = newd;
	while (l < r) {
		if (dep[l] + dep[r] < k) {
			ans += r - l;
			++l;
		}
		else {
			--r;
		}
	}
	return ans;
}

Loading...
Ownership of this post data is guaranteed by blockchain and smart contracts to the creator alone.