BuringStraw

BuringStraw

Dijkstra的全新寫法

Dijkstra 嘛,就是每次從最短路徑未固定的點中找到已知最短路徑最短的點,然後將它固定,並更新這個點連接的其他點的最短路徑。最開始時,源點到源點的最短路徑為 0。
所以,複習了一遍Dijkstra然後發現了幾個函數

  • make_heap (first, last, comp) : 把一個數組搞成一個堆
  • push_heap (first, last, comp) : 讓數組末尾的數浮到堆中正確的位置
  • pop_heap (first, last, comp) : 把堆gui頭丟到數組末尾

那麼簡單地封裝一下就是

void push (int x) {
	heap[++hsize] = x;
	std::push_heap(heap + 1, heap + 1 + hsize, cmp1);
}
void pop (void) {
	std::pop_heap(heap + 1,heap + 1 + hsize--, cmp1);
}

用數組實現的堆跑得比香港記者還快,vector實現的優先隊列不知道高到哪裡去了。
如圖

模板題代碼如下

#include <cstdio>
#include <algorithm>

const int MAXM = 500000 + 5, MAXN = 100000 + 5, INF = 2147483647;

int n, m, s;

struct ed {
	int to, nex, w;
} e[MAXM];

int head[MAXN], dis[MAXN], hsize;
bool v[MAXN];
int newp;

struct node {
	int id, v;
} heap[MAXN];

void insert (int p1, int p2, int w) {
	++newp;
	e[newp].to = p2;
	e[newp].w = w;
	e[newp].nex = head[p1];
	head[p1] = newp;
}

bool cmp1 (node x, node y) {
	return x.v > y.v;
}

void push (node x) {
	heap[++hsize] = x;
	std::push_heap(heap + 1, heap + 1 + hsize, cmp1);
}

void pop (void) {
	std::pop_heap(heap + 1,heap + 1 + hsize--, cmp1);
}

void dij (int s) {
	for (int i = 1; i <= n; ++i) {
		dis[i] = INF;
		v[i] = 0;
	}
	dis[s] = 0;
	hsize = 0;
	push((node){s, 0});
	
	while (hsize) {
		node u = heap[1];
		pop();
		if (v[u.id]) continue;//已固定的點 
		v[u.id] = 1;
		for (int i = head[u.id]; i; i = e[i].nex) {
			int y = e[i].to;
			if (dis[y] > u.v + e[i].w) {
				dis[y] = u.v + e[i].w;
				push((node){y, dis[y]});
			}
		}
	}
}

int main (void) {
	scanf("%d%d%d", &n, &m, &s);
	
	for (int i = 1; i <= n; ++i) {
		head[i] = 0;
		heap[i] = (node){0, 0};
	}
	
	for (int i = 1; i <= m; ++i) {
		e[i] = (ed){0, 0, 0};
	}
	
	{
		int p1, p2, w;
		for (int i = 1; i <= m; ++i) {
			scanf("%d%d%d", &p1, &p2, &w);
			insert(p1, p2, w);
		}
	}
	
	dij(s);
	
	for (int i = 1; i <= n; ++i) {
		printf("%d ", dis[i]);
	}
	putchar('\n');
	
	return 0;
}
載入中......
此文章數據所有權由區塊鏈加密技術和智能合約保障僅歸創作者所有。